Working with vectors

Questions

Question 1. Do the vectors $\langle 1,2,4\rangle$ and $\langle-2,-2,2\rangle$ form an acute, right, or obtuse angle (when placed tail to tail)?

Question 2. If \mathbf{u} and \mathbf{v} are two vectors in \mathbb{R}^{3}, we have the two identities

$$
\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{v}| \cos \theta, \quad|\mathbf{u} \times \mathbf{v}|=|\mathbf{u}||\mathbf{v}| \sin \theta
$$

where θ is the angle between \mathbf{u} and \mathbf{v}. Which of these formulas is better for determining θ, and why?

Question 3. Find where the line through the points $(1,2,3)$ and $(2,4,6)$ intersects the plane $x+3 y+z=20$.

Question 4. On a previous discussion worksheet, you investigated the equation

$$
(\mathbf{r}-\mathbf{a}) \cdot(\mathbf{r}-\mathbf{b})=0
$$

where $\mathbf{r}=\langle x, y\rangle, \mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}\right\rangle$ where $a_{1}, a_{2}, b_{1}, b_{2}$ are constants. After some tedious algebra, we found that this equation describes a circle such that the line segment connecting $\left(a_{1}, a_{2}\right)$ and $\left(b_{1}, b_{2}\right)$ is its diameter.

With your newfound knowledge (geometric understanding of the dot product), see if you can arrive at that same conclusion geometrically.

