Working with vectors

Questions

Question 1. Do the vectors (1, 2, 4) and (-2, -2, 2) form an acute, right, or obtuse angle (when placed tail to tail)?

Question 2. If **u** and **v** are two vectors in \mathbb{R}^3 , we have the two identities

 $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}| |\mathbf{v}| \cos \theta, \qquad |\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| |\mathbf{v}| \sin \theta$

where θ is the angle between **u** and **v**. Which of these formulas is better for determining θ , and why?

Question 3. Find where the line through the points (1, 2, 3) and (2, 4, 6) intersects the plane x + 3y + z = 20.

Question 4. On a previous discussion worksheet, you investigated the equation

$$(\mathbf{r} - \mathbf{a}) \boldsymbol{\cdot} (\mathbf{r} - \mathbf{b}) = 0$$

where $\mathbf{r} = \langle x, y \rangle$, $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$ where a_1, a_2, b_1, b_2 are constants. After some tedious algebra, we found that this equation describes a circle such that the line segment connecting (a_1, a_2) and (b_1, b_2) is its diameter.

With your newfound knowledge (geometric understanding of the dot product), see if you can arrive at that same conclusion geometrically.